login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A078030 Expansion of (1-x)/(1+2*x^3). 1
1, -1, 0, -2, 2, 0, 4, -4, 0, -8, 8, 0, 16, -16, 0, -32, 32, 0, 64, -64, 0, -128, 128, 0, 256, -256, 0, -512, 512, 0, 1024, -1024, 0, -2048, 2048, 0, 4096, -4096, 0, -8192, 8192, 0, 16384, -16384, 0, -32768, 32768, 0, 65536, -65536, 0, -131072, 131072, 0, 262144, -262144, 0, -524288, 524288, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (0,0,-2).

MAPLE

seq(coeff(series((1-x)/(1+2*x^3), x, n+1), x, n), n = 0..60); # G. C. Greubel, Aug 05 2019

MATHEMATICA

CoefficientList[Series[(1-x)/(1+2*x^3), {x, 0, 60}], x] (* G. C. Greubel, Aug 05 2019 *)

PROG

(PARI) my(x='x+O('x^60)); Vec((1-x)/(1+2*x^3)) \\ G. C. Greubel, Aug 05 2019

(MAGMA) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1-x)/(1+2*x^3) )); // G. C. Greubel, Aug 05 2019

(Sage) ((1-x)/(1+2*x^3)).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, Aug 05 2019

(GAP) a:=[1, -1, 0];; for n in [4..60] do a[n]:=-2*a[n-3]; od; a; # G. C. Greubel, Aug 05 2019

CROSSREFS

Sequence in context: A262967 A168090 A078029 * A262056 A264628 A241320

Adjacent sequences:  A078027 A078028 A078029 * A078031 A078032 A078033

KEYWORD

sign

AUTHOR

N. J. A. Sloane, Nov 17 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 11 00:03 EDT 2021. Contains 342877 sequences. (Running on oeis4.)