login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077866
Expansion of (1-x)^(-1)/(1 - x - 2*x^2 + 2*x^3).
6
1, 2, 5, 8, 15, 22, 37, 52, 83, 114, 177, 240, 367, 494, 749, 1004, 1515, 2026, 3049, 4072, 6119, 8166, 12261, 16356, 24547, 32738, 49121, 65504, 98271, 131038, 196573, 262108, 393179, 524250, 786393, 1048536, 1572823, 2097110, 3145685, 4194260, 6291411, 8388562
OFFSET
0,2
COMMENTS
Equals triangle A122196 * [1,2,4,8,16,...]. - Gary W. Adamson, Nov 29 2008
Conjecture: let b(n) be the number of subsets S of {1,2,...,n} having more than one element such that (sum of least two elements of S) = max(S). Then b(0) = b(1) = b(2) = 0 and b(n+3) = a(n) for n >= 0. - Clark Kimberling Sep 27 2022
FORMULA
a(n) = 2^(n/2)*(3 + 2*sqrt(2) + (3 - 2*sqrt(2))*(-1)^n) - n - 5. - Paul Barry, Apr 23 2004
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + 2*a(n-4); a(0)=1, a(1)=2, a(2)=5, a(3)=8. - Harvey P. Dale, Feb 16 2013
a(2n) = 3*2^(n+1) - 2(n+1) - 3 = A050488(n+1) and a(2n+1) = 2^(n+3) - 2(n+3) = A005803(n+3). Also, a(2n+1) - a(2n) = 2^(n+1) - 1 = a(2n) - a(2n - 1). - Gregory L. Simay, Feb 07 2021
E.g.f.: 6*cosh(sqrt(2)*x) + 4*sqrt(2)*sinh(sqrt(2)*x) - exp(x)*(5 + x). - Stefano Spezia, Feb 08 2021
G.f.: 1/((1 - x)^2 * (1 - 2*x^2)). - Michael Somos, Aug 11 2021
EXAMPLE
G.f. = 1 + 2*x + 5*x^2 + 8*x^3 + 15*x^4 + 22*x^5 + 37*x^6 + ... - Michael Somos, Aug 11 2021
MATHEMATICA
CoefficientList[Series[(1-x)^(-1)/(1-x-2x^2+2x^3), {x, 0, 50}], x] (* or *) LinearRecurrence[{2, 1, -4, 2}, {1, 2, 5, 8}, 50] (* Harvey P. Dale, Feb 16 2013 *)
PROG
(PARI) Vec((1-x)^(-1)/(1-x-2*x^2+2*x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
CROSSREFS
Bisections are A005803 and A050488.
Cf. A052551 (first differences), A122196.
Sequence in context: A024808 A238619 A323285 * A098894 A121641 A349796
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved