login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A077868 Expansion of (1-x)^(-1)/(1-x-x^3). 8
1, 2, 3, 5, 8, 12, 18, 27, 40, 59, 87, 128, 188, 276, 405, 594, 871, 1277, 1872, 2744, 4022, 5895, 8640, 12663, 18559, 27200, 39864, 58424, 85625, 125490, 183915, 269541, 395032, 578948, 848490, 1243523, 1822472, 2670963, 3914487, 5736960, 8407924, 12322412 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Row sums of Riordan array (1/(1-x), x(1+x^2)). - Paul Barry, Feb 16 2005

a(n)=number of partitions of {1,...,n+3} into two blocks in which only 1- or 3-strings of consecutive integers can appear in a block and there is at least one 3-string. E.g. a(3)=5 because the enumerated partitions of {1,2,3,4,5,6} are 1235/46, 1345/26,15/2346,13/2456,123/456. - Augustine O. Munagi, Apr 11 2005

LINKS

Table of n, a(n) for n=0..41.

A. O. Munagi, Set Partitions with Successions and Separations, IJMMS 2005:3 (2005), 451-463.

Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-1)

FORMULA

Partial sums of A000930. a(n-1)=sum{k=0..floor(n/2), binomial(n-2k, k+1)}. - Paul Barry, Jul 07 2004

a(n-3)=Sum(binomial(n-r, r)), r=1, 2, ... which is the case t=3 and k=2 in the general case of t-strings and k blocks: a(n-3, k, t) = Sum(binomial(n-r*(t-1), r)*S2(n-r*(t-1)-1, k-1)), r=1, 2, ... - Augustine O. Munagi, Apr 11 2005

a(n)=a(n-1)+a(n-2)-a(n-5) for n>4. a(n)=a(n-2)+a(n-3)+a(n-4)+2 for n>3. G.f.: 1/((1-x)*(1-x-x^3)- Paul Weisenhorn Oct 28 2011.

MAPLE

a:= n-> (Matrix(4, (i, j)-> if i=j-1 then 1 elif j=1 then [2, -1, 1, -1][i] else 0 fi)^n)[1, 1]: seq(a(n), n=0..41); # Alois P. Heinz, Sep 05 2008

g:=(1+z+z^2)/(1-z-z^3): gser:=series(g, z=0, 43): seq(coeff(gser, z, n)-1, n=1..42); # Zerinvary Lajos, Jan 09 2009

MATHEMATICA

a=0; b=0; c=0; lst={}; Do[d=a+c+1; AppendTo[lst, d]; a=b; b=c; c=d, {n, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 28 2010 *)

PROG

(PARI) Vec(1/(1-x)/(1-x-x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012

CROSSREFS

Cf. A077941, A105489, A000071.

Sequence in context: A232476 A132842 A063978 * A109537 A081226 A156623

Adjacent sequences:  A077865 A077866 A077867 * A077869 A077870 A077871

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Nov 17 2002

EXTENSIONS

More terms from Augustine O. Munagi, Apr 11 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 07:09 EST 2017. Contains 294993 sequences.