login
A077869
Expansion of (1-x)^(-1)/(1-x+x^3).
0
1, 2, 3, 3, 2, 0, -2, -3, -2, 1, 5, 8, 8, 4, -3, -10, -13, -9, 2, 16, 26, 25, 10, -15, -39, -48, -32, 8, 57, 90, 83, 27, -62, -144, -170, -107, 38, 209, 317, 280, 72, -244, -523, -594, -349, 175, 770, 1120, 946, 177, -942, -1887, -2063, -1120, 768, 2832, 3953, 3186, 355, -3597, -6782, -7136, -3538, 3245
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..floor((n+1)/2)} (-1)^k*binomial(n+1-2k,k+1), n>=0. - Taras Goy, Apr 15 2020
From Wesley Ivan Hurt, Jan 25 2022: (Start)
G.f.: (1-x)^(-1)/(1-x+x^3).
a(n) = 2*a(n-1)-a(n-2)-a(n-3)+a(n-4). (End)
MATHEMATICA
CoefficientList[Series[(1/(1-x))/(1-x+x^3), {x, 0, 70}], x] (* Harvey P. Dale, Mar 20 2013 *)
CROSSREFS
Sequence in context: A279645 A198197 A203400 * A076585 A323186 A022906
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved