login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A076726 a(n) = Sum_{k>=0} k^n/2^k. 10
2, 2, 6, 26, 150, 1082, 9366, 94586, 1091670, 14174522, 204495126, 3245265146, 56183135190, 1053716696762, 21282685940886, 460566381955706, 10631309363962710, 260741534058271802, 6771069326513690646 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Ramesh L. Srigiriraju, Recurrences for A076726

FORMULA

a(n) = 2*A000670(n). - Philippe Deléham, Mar 06 2004

a(n) ~ n! / (log(2))^(n+1). - Vaclav Kotesovec, Nov 28 2013

From Jianing Song, May 04 2022: (Start)

a(0) = 2, a(n) = Sum_{k=0..n-1} binomial(n,k)*a(k) for n >= 1.

G.f.: Sum_{k>=0} 1/(2^k*(1-k*x)).

E.g.f.: 1/(1-exp(x)/2). (End)

EXAMPLE

a(0) = 2 because 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + ... = 2; a(1) = 2 because 0 + 1/2 + 2/4 + 3/8 + 4/16 + 5/32 + ... = 2.

G.f. = 2 + 2*x + 6*x^2 + 26*x^3 + 150*x^4 + 1082*x^5 + 9366*x^6 + 94586*x^7 + ...

MATHEMATICA

a[n_] := Sum[(k^n)/(2^k), {k, 0, Infinity}]; Table[ a[n], {n, 0, 18}]

a[n_] := (-1)^(n+1) PolyLog[-n, 2] (* Vladimir Reshetnikov, Jan 23 2011 *)

PROG

(PARI) a(n)=abs(polylog(-n, 2)) \\ Charles R Greathouse IV, Jul 15 2014

CROSSREFS

Same as A000629 except for a(0).

A000629, A000670, A002050, A052856, A076726 are all more-or-less the same sequence. - N. J. A. Sloane, Jul 04 2012

Sequence in context: A052660 A135407 A292831 * A032272 A214446 A179320

Adjacent sequences: A076723 A076724 A076725 * A076727 A076728 A076729

KEYWORD

nonn

AUTHOR

Charles G. Waldman (cgw(AT)alum.mit.edu), Oct 27 2002

EXTENSIONS

More terms from Robert G. Wilson v, Oct 29 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 02:09 EST 2022. Contains 358712 sequences. (Running on oeis4.)