
COMMENTS

Smallest integer value of the form 1/z(k,n) where z(k,x)=x/(x1)^2 sum(i=1,k,i/x^i).
For any x>1 lim k > infinity z(k,x)=0. More generally if p is an integer >=2, 1/z(u(k),p) is an integer for any k>=2 where u(k)=(p1)^2*p^((p^k(p1)*kp)/(p1)). u(k) can also be written : u(k)=(p1)^2 *p^(1+p+p^2+...+p^(k2)).
For n>=2, a(n) is equal to the number of functions f:{1,2,...,n}>{1,2,...,n} such that for fixed, different x_1, x_2 in {1,2,...,n} and fixed y_1, y_2 in {1,2,...,n} we have f(x_1)<>y_1 and f(x_2)<> y_2.  Milan Janjic, May 10 2007
a(n+1) = Sum_{k=0...n} binomial(n,k)*n^k*k, which enumerates the total number of elements in the domain of definition over all partial functions on n labeled objects.  Geoffrey Critzer, Feb 08 2012
Also, the number of possible negation tables in the nvalued logics (cf. A262458 and A262459).  Max Alekseyev, Sep 23 2015


MATHEMATICA

Table[Sum[Binomial[n, k] n^k k, {k, 0, n}], {n, 1, 20}] (* Geoffrey Critzer, Feb 08 2012 *)
