login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A074673
Four-digit distinct-digit primes.
13
1039, 1049, 1063, 1069, 1087, 1093, 1097, 1237, 1249, 1259, 1279, 1283, 1289, 1297, 1307, 1327, 1367, 1409, 1423, 1427, 1429, 1439, 1453, 1459, 1483, 1487, 1489, 1493, 1523, 1543, 1549, 1567, 1579, 1583, 1597, 1607, 1609, 1627, 1637, 1657, 1693, 1697
OFFSET
1,1
COMMENTS
There are exactly 510 four-digit primes with all distinct digits. The end of the sequence is: 8761, 8923, 8941, 8951, 8963, 8971, 9013, 9041, 9043, 9067, 9103, 9127, 9137, 9157, 9173, 9187, 9203, 9241, 9257, 9281, 9283, 9341, 9371, 9403, 9413, 9421, 9431, 9437, 9461, 9463, 9467, 9473, 9521, 9547, 9587, 9601, 9613, 9623, 9631, 9643, 9721, 9743, 9781, 9803, 9817, 9851, 9857, 9871.
LINKS
Nathaniel Johnston, Table of n, a(n) for n = 1..510 (full sequence)
EXAMPLE
a(1) = 1039 and a(510) = 9871 because these are the first and the last four-digit primes with all distinct digits.
MATHEMATICA
Select[Range[1001, 9999, 2], Length[Union[IntegerDigits[#]]] == 4 && PrimeQ[#] &] (* Corrected by Harvey P. Dale, Jan 17 2011 *)
Select[Prime[Range[168, 1229]], Max[DigitCount[#]]==1&] (* Harvey P. Dale, Aug 22 2019 *)
PROG
(PARI) is(n)=isprime(n) && #digits(n)==4 && #Set(digits(n))==4 \\ Charles R Greathouse IV, Feb 11 2017
CROSSREFS
The first differences are in A074674. 5-digit distinct-digit primes are in A074671, see also A074672. 6-digit distinct-digit primes are in A074669, see also A074670. 7-digit distinct-digit primes are in A074667, see also A074668. 8-digit distinct-digit primes are in A074665, see also A074666.
Sequence in context: A251876 A251869 A251868 * A235156 A288413 A020395
KEYWORD
fini,full,nonn,base
AUTHOR
Zak Seidov, Aug 30 2002
STATUS
approved