|
|
A074671
|
|
Five-digit distinct-digit primes.
|
|
13
|
|
|
10243, 10247, 10253, 10259, 10267, 10273, 10289, 10357, 10369, 10427, 10429, 10453, 10457, 10459, 10463, 10487, 10529, 10567, 10589, 10597, 10627, 10639, 10657, 10687, 10723, 10729, 10739, 10753, 10789, 10837, 10847, 10853, 10859, 10867, 10937, 10957
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
There are exactly 2529 five-digit primes with all distinct digits. The end of the sequence is: 97241, 97283, 97301, 97381, 97423, 97453, 97463, 97501, 97523, 97561, 97583, 97613, 97651, 97813, 97841, 97843, 97861, 98017, 98041, 98047, 98057, 98123, 98143, 98207, 98213, 98251, 98257, 98317, 98321, 98327, 98347, 98407, 98453, 98467, 98473, 98507, 98543, 98561, 98563, 98573, 98621, 98627, 98641, 98713, 98731.
|
|
LINKS
|
Nathaniel Johnston, Table of n, a(n) for n = 1..2529 (full sequence)
|
|
EXAMPLE
|
a(1)=10243 and a(2529)=98731 because these are the first and the last 5-digit primes with all distinct digits.
|
|
MATHEMATICA
|
Select[Range[10243, 98731, 2], Length[Union[IntegerDigits[ # ]]]==5&&PrimeQ[ # ]&]
Select[Prime[Range[1230, 9592]], Max[DigitCount[#]]==1&] (* Harvey P. Dale, Mar 16 2016 *)
|
|
PROG
|
(PARI) is(n)=isprime(n) && #digits(n)==5 && #Set(digits(n))==5 \\ Charles R Greathouse IV, Feb 11 2017
|
|
CROSSREFS
|
The first differences are in A074672. 4-digit distinct-digit primes are in A074673. 6-digit distinct-digit primes are in A074669, see also A074670. 7-digit distinct-digit primes are in A074667, see also A074668. 8-digit distinct-digit primes are in A074665, see also A074666.
Sequence in context: A235693 A247948 A254563 * A235157 A156119 A109176
Adjacent sequences: A074668 A074669 A074670 * A074672 A074673 A074674
|
|
KEYWORD
|
fini,full,nonn,base
|
|
AUTHOR
|
Zak Seidov, Aug 30 2002
|
|
STATUS
|
approved
|
|
|
|