login
A074475
a(n) = Sum_{j=0..floor(n/2)} T(2*j + q), where T(n) are generalized tribonacci numbers (A001644) and q = n - 2*floor(n/2).
2
3, 1, 6, 8, 17, 29, 56, 100, 187, 341, 630, 1156, 2129, 3913, 7200, 13240, 24355, 44793, 82390, 151536, 278721, 512645, 942904, 1734268, 3189819, 5866989, 10791078, 19847884, 36505953, 67144913, 123498752, 227149616, 417793283
OFFSET
0,1
COMMENTS
a(n) is the convolution of T(n) with the sequence (1,0,1,0,1,0,...).
FORMULA
a(n) = 2*a(n-2) + 2*a(n-3) + a(n-4), a(0)=3, a(1)=1, a(2)=6, a(3)=8.
G.f.: (3+x)/(1-2*x^2-2*x^3-x^4).
MATHEMATICA
CoefficientList[Series[(3+x)/(1-2*x^2-2*x^3-x^4), {x, 0, 40}], x]
LinearRecurrence[{0, 2, 2, 1}, {3, 1, 6, 8}, 40] (* Harvey P. Dale, Jul 08 2017 *)
PROG
(PARI) my(x='x+O('x^40)); Vec((3+x)/(1-2*x^2-2*x^3-x^4)) \\ G. C. Greubel, Apr 21 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (3+x)/(1-2*x^2-2*x^3-x^4) )); // G. C. Greubel, Apr 21 2019
(Sage) ((3+x)/(1-2*x^2-2*x^3-x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 21 2019
CROSSREFS
Sequence in context: A103407 A306938 A257259 * A144877 A049410 A013610
KEYWORD
easy,nonn
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Aug 23 2002
STATUS
approved