

A074456


Consider surface area of unit sphere as a function of the dimension d; maximize this as a function of d (considered as a continuous variable); sequence gives decimal expansion of the resulting surface area.


3



3, 3, 1, 6, 1, 1, 9, 4, 4, 8, 4, 9, 6, 2, 0, 0, 2, 6, 9, 1, 8, 6, 3, 0, 2, 4, 0, 1, 5, 5, 8, 2, 9, 7, 3, 5, 8, 0, 0, 4, 7, 2, 3, 2, 8, 4, 1, 0, 8, 7, 2, 5, 8, 5, 1, 3, 1, 0, 0, 1, 1, 8, 1, 5, 5, 4, 0, 3, 7, 5, 6, 5, 4, 6, 4, 7, 1, 8, 4, 3, 4, 4, 6, 6, 6, 0, 7, 4, 6, 0, 9, 4, 9, 3, 5, 1, 3, 8, 7
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,1


COMMENTS

If you set v[n_] := Pi^(n/2)/(n/2)! and s[n_] := n*Pi^(n/2)/(n/2)! and then Plot[{6.283v[n  2], s[n]}, {n, 0, 20}], the two curves are almost identical.


LINKS

Table of n, a(n) for n=2..100.


EXAMPLE

33.16119448496200269186302401558297358004723284108725851310011815540375\
65464718434466607460949351387694776...


CROSSREFS

The dimension is given in A074455. Cf. A072478 & A072479.
Sequence in context: A144944 A137426 A269949 * A016454 A065227 A208539
Adjacent sequences: A074453 A074454 A074455 * A074457 A074458 A074459


KEYWORD

cons,nonn


AUTHOR

Robert G. Wilson v, Aug 22 2002


EXTENSIONS

Checked by Martin Fuller, Jul 12 2007


STATUS

approved



