login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073785
Numbers in base -3.
11
0, 1, 2, 120, 121, 122, 110, 111, 112, 100, 101, 102, 220, 221, 222, 210, 211, 212, 200, 201, 202, 12020, 12021, 12022, 12010, 12011, 12012, 12000, 12001, 12002, 12120, 12121, 12122, 12110, 12111, 12112, 12100, 12101, 12102, 12220, 12221, 12222
OFFSET
0,3
REFERENCES
D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 2, p. 189.
LINKS
Jaime Rangel-Mondragon, Negabinary Numbers to Decimal
Eric Weisstein's World of Mathematics, Negabinary
Wikipedia, Negative base
MATHEMATICA
ToNegaBases[i_Integer, b_Integer] := FromDigits[ Rest[ Reverse[ Mod[ NestWhileList[(#1 - Mod[ #1, b])/-b &, i, #1 != 0 &], b]]]]; Table[ ToNegaBases[n, 3], {n, 0, 45}]
PROG
(Haskell)
a073785 0 = 0
a073785 n = a073785 n' * 10 + m where
(n', m) = if r < 0 then (q + 1, r + 3) else (q, r)
where (q, r) = quotRem n (negate 3)
-- Reinhard Zumkeller, Jul 07 2012
(Python)
def A073785(n):
s, q = '', n
while q >= 3 or q < 0:
q, r = divmod(q, -3)
if r < 0:
q += 1
r += 3
s += str(r)
return int(str(q)+s[::-1]) # Chai Wah Wu, Apr 09 2016
(PARI) A073785 = base(n, b=-3) = if(n, base(n\b, b)*10 + n%b, 0) \\ Jianing Song, Oct 20 2018
CROSSREFS
Cf. A007089.
Nonnegative numbers in negative bases: A039723 (b=-10), A039724 (b=-2), this sequence (b=-3), A007608 (b=-4), A073786 (b=-5), A073787 (b=-6), A073788 (b=-7), A073789 (b=-8), A073790 (b=-9).
Cf. A320636 (negative numbers in base -3).
Sequence in context: A243512 A165163 A153658 * A102355 A206355 A360607
KEYWORD
base,easy,nonn
AUTHOR
Robert G. Wilson v, Aug 11 2002
STATUS
approved