login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A039724 Numbers in base -2. 47
0, 1, 110, 111, 100, 101, 11010, 11011, 11000, 11001, 11110, 11111, 11100, 11101, 10010, 10011, 10000, 10001, 10110, 10111, 10100, 10101, 1101010, 1101011, 1101000, 1101001, 1101110, 1101111, 1101100, 1101101, 1100010, 1100011, 1100000, 1100001, 1100110, 1100111, 1100100 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(A007583(n)) are the only terms with all 1s digits; the number of digits = 2n + 1. - Bob Selcoe, Aug 21 2016

REFERENCES

M. Gardner, Knotted Doughnuts and Other Mathematical Entertainments. Freeman, NY, 1986, p. 101.

D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 2, p. 189.

LINKS

William A. Tedeschi, Table of n, a(n) for n = 0..10000

Joerg Arndt, Matters Computational (The Fxtbook), p. 58-59

Roberto Avanzi, Gerhard Frey, Tanja Lange, and Roger Oyono, On using expansions to the base of -2, International Journal of Computer Mathematics, 81:4 (2004), pp. 403-406. arXiv:math/0312060 [math.NT], 2003.

Jaime Rangel-Mondragon, Negabinary Numbers to Decimal

Vladimir Shevelev, Two analogs of Thue-Morse sequence, arXiv:1603.04434 [math.NT], 2016.

Eric Weisstein's World of Mathematics, Negabinary

Wikipedia, Negative base

FORMULA

G.f. g(x) satisfies g(x) = (x + 10*x^2 + 11*x^3)/(1 - x^4) + 100(1 + x + x^2 + x^3)*g(x^4)/x^2. - Robert Israel, Feb 24 2016

EXAMPLE

2 = 4 + (-2) + 0 = 110_(-2), 3 = 4 + (-2) + 1 = 111_(-2), ..., 6 = 16 + (-8) + 0 + (-2) + 0 = 11010_(-2).

MAPLE

f:= proc(n) option remember; 10*floor((n mod 4)/2) + (n mod 2) + 100*procname(round(n/4)) end proc:

f(0):= 0:

seq(f(i), i=0..100); # Robert Israel, Feb 24 2016

MATHEMATICA

ToNegaBases[ i_Integer, b_Integer ] := FromDigits[ Rest[ Reverse[ Mod[ NestWhileList[ (#1 - Mod[ #1, b ])/-b &, i, #1 != 0 & ], b ] ] ] ]; Table[ ToNegaBases[ n, 2 ], {n, 0, 31} ]

PROG

(Haskell)

a039724 0 = 0

a039724 n = a039724 n' * 10 + m where

   (n', m) = if r < 0 then (q + 1, r + 2) else (q, r)

             where (q, r) = quotRem n (negate 2)

-- Reinhard Zumkeller, Jul 07 2012

(Python)

def A039724(n):

    s, q = '', n

    while q >= 2 or q < 0:

        q, r = divmod(q, -2)

        if r < 0:

            q += 1

            r += 2

        s += str(r)

    return int(str(q)+s[::-1]) # Chai Wah Wu, Apr 09 2016

(PARI) A039724(n)=if(n, A039724(n\(-2))*10+bittest(n, 0)) \\ M. F. Hasler, Oct 16 2018

CROSSREFS

Nonnegative numbers in negative bases: A039723 (b=-10), this sequence (b=-2), A073785 (b=-3), A007608 (b=-4), A073786 (b=-5), A073787 (b=-6), A073788 (b=-7), A073789 (b=-8), A073790 (b=-9).

Cf. A212529 (negative numbers in base -2).

Cf. A005351, A007583.

Sequence in context: A281219 A266979 A267138 * A008944 A306701 A106004

Adjacent sequences:  A039721 A039722 A039723 * A039725 A039726 A039727

KEYWORD

base,nice,nonn,easy

AUTHOR

Robert Lozyniak (11(AT)onna.com)

EXTENSIONS

More terms from Eric W. Weisstein

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 14:29 EST 2020. Contains 338802 sequences. (Running on oeis4.)