login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073505
Number of primes == 1 (mod 10) less than 10^n.
5
0, 5, 40, 306, 2387, 19617, 166104, 1440298, 12711386, 113761519, 1029517130, 9401960980, 86516370000
OFFSET
1,2
COMMENTS
Also Pi(n,5,1)
This and the related sequences A073505-A073517 and A006880, A073548-A073565 are included because there is interest in the distribution of primes by their initial or final digits.
LINKS
Eric Weisstein's World of Mathematics, Modular Prime Counting Function
FORMULA
a(n) + A073506(n) + A073507(n) + A073508(n) + 2 = A006880(n).
EXAMPLE
a(2) = 5 because there are 5 primes == 1 (mod 10) less than 10^2. They are 11, 31, 41, 61 and 71.
MATHEMATICA
c = 0; k = 1; Do[While[k < 10^n, If[PrimeQ[k], c++ ]; k += 10]; Print[c], {n, 1, 10}]
KEYWORD
base,nonn,more
AUTHOR
Shyam Sunder Gupta, Aug 14 2002
EXTENSIONS
Edited by Robert G. Wilson v, Oct 03 2002
a(10) from Robert G. Wilson v, Dec 22 2003
a(11)-a(13) from Giovanni Resta, Aug 07 2018
STATUS
approved