login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073268
Number of plane binary trees whose right (or respectively: left) subtree is a unique "complete" tree of (2^m)-1 nodes with all the leaf-nodes at the same depth m and the left (or respectively: right) subtree is any plane binary tree of size n - 2^m + 1.
6
1, 1, 2, 3, 8, 20, 58, 179, 576, 1902, 6426, 22092, 77026, 271702, 967840, 3476555, 12578728, 45800278, 167693698, 617037126, 2280467586, 8461771342, 31510700712, 117725789124, 441141656810, 1657559677646, 6243810767912
OFFSET
0,3
COMMENTS
The Catalan bijection A073286 fixes only these kinds of trees, so this occurs in A073202 as row 41.
FORMULA
a(0)=1, a(n) = Sum_{i=0..floor(log_2(n))} Cat(n-(2^i))
G.f.: 1 + Sum_{k>=0} x^(2^k)*C(x) where C(x) = (1-sqrt(1-4*x))/(2*x) is the g.f. of the Catalan numbers (A000108). [Joerg Arndt, Jul 02 2012]
MAPLE
A073268 := proc(n) local i; if(0=n) then 1 else add(Cat(n-2^i), i=0..floor(evalf(log[2](n)))); fi; end;
Cat := n -> binomial(2*n, n)/(n+1);
MATHEMATICA
a[0] = 1; a[n_] := Sum[CatalanNumber[n - 2^i], {i, 0, Log[2, n]}]; Table[ a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 05 2016 *)
PROG
(MIT/GNU Scheme) (define (A073268 n) (if (zero? n) 1 (let sumloop ((i (floor->exact (/ (log n) (log 2)))) (s 0)) (cond ((negative? i) s) (else (sumloop (-1+ i) (+ s (A000108 (- n (expt 2 i))))))))))
(PARI)
N=66; x='x+O('x^N); lg=ceil(log(N)/log(2));
C(x)=(1-sqrt(1-4*x))/(2*x);
gf=1+sum(k=0, lg, x^(2^k)*C(x) );
Vec(gf)
/* Joerg Arndt, Jul 02 2012 */
CROSSREFS
Occurs for first time in A073202 as row 41.
Sequence in context: A095341 A167123 A029895 * A073190 A066051 A056971
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 25 2002
STATUS
approved