

A072364


Decimal expansion of (1/e)^(1/e).


10



6, 9, 2, 2, 0, 0, 6, 2, 7, 5, 5, 5, 3, 4, 6, 3, 5, 3, 8, 6, 5, 4, 2, 1, 9, 9, 7, 1, 8, 2, 7, 8, 9, 7, 6, 1, 4, 9, 0, 6, 7, 8, 0, 2, 9, 2, 9, 7, 5, 4, 4, 7, 3, 5, 9, 3, 8, 9, 1, 4, 8, 9, 9, 9, 6, 5, 1, 7, 1, 5, 5, 9, 0, 2, 9, 0, 8, 5, 3, 6, 2, 1, 2, 3, 0, 1, 2, 3, 8, 7, 6, 4, 9, 3, 5, 3, 0, 9, 8, 3, 4, 7, 6, 0, 4
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Minimum value of x^x for real x>0.
Also minimum value of 1/x^(1/x) for real x>0 (occurs at e). Equals exp(Pi)/exp(1/exp(1)) * exp(Pi).  Gerald McGarvey, Sep 21 2004
If (1/e)^(1/e) < y < 1, then x^x = y has two solutions x = a and x = b with 0 < a < 1/e < b < 1. For example, (1/e)^(1/e) < 1/sqrt(2) < 1 and (1/4)^(1/4) = (1/2)^(1/2) = 1/sqrt(2) with 1/4 < 1/e < 1/2.  Jonathan Sondow, Sep 02 2011


LINKS

Table of n, a(n) for n=0..104.
Plouffe's Inverter entry for .69220062755
J. Sondow and D. Marques, Algebraic and transcendental solutions of some exponential equations, Annales Mathematicae et Informaticae 37 (2010) 151164; see p. 3 in the link.


EXAMPLE

0.69220062755534635386...


MATHEMATICA

RealDigits[E^(1/E), 10, 111][[1]]


PROG

(PARI) (1/exp(1))^(1/exp(1))
(PARI) exp(1/exp(1)) \\ Charles R Greathouse IV, Sep 01 2011


CROSSREFS

Cf. A068985 (1/e), A001113 (e), A072365 ((1/3)^(1/3)), A073229 (e^(1/e)), A073230 ((1/e)^e).
Sequence in context: A195403 A021595 A197696 * A087016 A161480 A198676
Adjacent sequences: A072361 A072362 A072363 * A072365 A072366 A072367


KEYWORD

cons,nonn


AUTHOR

Rick L. Shepherd, Jul 18 2002


STATUS

approved



