login
A161480
Decimal expansion of (129 +44*sqrt(2))/113.
4
1, 6, 9, 2, 2, 6, 0, 1, 4, 8, 1, 8, 0, 6, 7, 4, 1, 7, 8, 2, 9, 4, 4, 6, 2, 8, 6, 6, 0, 6, 3, 9, 5, 3, 2, 3, 4, 1, 3, 3, 3, 2, 3, 5, 6, 2, 0, 9, 3, 6, 7, 8, 8, 9, 5, 7, 5, 0, 2, 1, 1, 5, 7, 9, 3, 9, 4, 6, 2, 1, 4, 9, 6, 0, 3, 8, 3, 4, 2, 5, 6, 3, 8, 0, 0, 1, 5, 0, 8, 9, 8, 3, 2, 2, 2, 6, 7, 5, 1, 5, 0, 4, 7, 2, 6
OFFSET
1,2
COMMENTS
Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = {1, 2}, b = A161478.
Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = {0, 2}, b = A161479.
LINKS
FORMULA
Equals (11 +2*sqrt(2))/(11 -2*sqrt(2)).
EXAMPLE
(129 +44*sqrt(2))/113 = 1.69226014818067417829...
MAPLE
with(MmaTranslator[Mma]): Digits:=150:
RealDigits(evalf((129+44*sqrt(2))/113))[1]; # Muniru A Asiru, Apr 08 2018
MATHEMATICA
RealDigits[(129 +44*Sqrt[2])/113, 10, 100][[1]] (* G. C. Greubel, Apr 07 2018 *)
PROG
(PARI) (129 +44*sqrt(2))/113 \\ G. C. Greubel, Apr 07 2018
(Magma) (129 +44*Sqrt(2))/113; // G. C. Greubel, Apr 07 2018
CROSSREFS
Cf. A161478, A161479, A002193 (decimal expansion of sqrt(2)), A161481 (decimal expansion of (16131+6970*sqrt(2))/113^2).
Sequence in context: A197696 A072364 A087016 * A309819 A309825 A289503
KEYWORD
cons,nonn
AUTHOR
Klaus Brockhaus, Jun 13 2009
STATUS
approved