login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A073230 Decimal expansion of (1/e)^e. 15
0, 6, 5, 9, 8, 8, 0, 3, 5, 8, 4, 5, 3, 1, 2, 5, 3, 7, 0, 7, 6, 7, 9, 0, 1, 8, 7, 5, 9, 6, 8, 4, 6, 4, 2, 4, 9, 3, 8, 5, 7, 7, 0, 4, 8, 2, 5, 2, 7, 9, 6, 4, 3, 6, 4, 0, 2, 4, 7, 3, 5, 4, 1, 5, 6, 6, 7, 3, 6, 3, 3, 0, 0, 3, 0, 7, 5, 6, 3, 0, 8, 1, 0, 4, 0, 8, 8, 2, 4, 2, 4, 5, 3, 3, 7, 1, 4, 6, 7, 7, 4, 5, 6, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

(1/e)^e = e^(-e) = 1/(e^e) (reciprocal of A073226).

The power tower function f(x)=x^(x^(x^...)) is defined on the closed interval [e^(-e),e^(1/e)]. - Lekraj Beedassy, Mar 17 2005

REFERENCES

Paul Halmos, "Problems for Mathematicians, Young and Old", Dolciani Mathematical Expositions, 1991, Solution to problem 8A (Power Tower) p. 240.

LINKS

Table of n, a(n) for n=0..103.

J. Sondow and D. Marques, Algebraic and transcendental solutions of some exponential equations, Annales Mathematicae et Informaticae 37 (2010) 151-164; see the Appendix.

EXAMPLE

0.06598803584531253707679018759...

MATHEMATICA

a=IntegerDigits[IntegerPart[(1/E)^E*10^99]]; PrependTo[a, 0] (* Vladimir Joseph Stephan Orlovsky, Jul 17 2008 *)

RealDigits[(1/E)^E, 10, 100][[1]] (* Alonso del Arte, Aug 26 2011 *)

PROG

(PARI) exp(-1)^exp(1)

CROSSREFS

Cf. A001113 (e), A068985 (1/e), A073229 (e^(1/e)), A072364 ((1/e)^(1/e)), A073226 (e^e).

Sequence in context: A242761 A200477 A269768 * A134881 A229983 A251859

Adjacent sequences:  A073227 A073228 A073229 * A073231 A073232 A073233

KEYWORD

cons,nonn

AUTHOR

Rick L. Shepherd, Jul 22 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 9 00:45 EST 2016. Contains 278959 sequences.