login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069908
Numbers congruent to +-2, +-3, +-4 or +-5 mod 16.
4
2, 3, 4, 5, 11, 12, 13, 14, 18, 19, 20, 21, 27, 28, 29, 30, 34, 35, 36, 37, 43, 44, 45, 46, 50, 51, 52, 53, 59, 60, 61, 62, 66, 67, 68, 69, 75, 76, 77, 78, 82, 83, 84, 85, 91, 92, 93, 94, 98, 99, 100, 101, 107, 108, 109, 110, 114, 115, 116, 117, 123
OFFSET
1,1
LINKS
G. E. Andrews et al., q-Engel series expansions and Slater's identities Quaestiones Math., 24 (2001), 403-416.
FORMULA
G.f.: x*(2+x+x^2+x^3+6*x^4+x^5+x^6+x^7+2*x^8) / ( (1+x)*(x^2+1)*(x^4+1)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
MATHEMATICA
Select[Range[200], MemberQ[{2, 3, 4, 5, 11, 12, 13, 14}, Mod[#, 16]]&] (* Jean-François Alcover, Apr 09 2014 *)
CoefficientList[Series[(2 + x + x^2 + x^3 + 6 x^4 + x^5 + x^6 + x^7 + 2 x^8)/((1 + x) (x^2 + 1) (x^4 + 1) (x - 1)^2), {x, 0, 80}], x] (* Vincenzo Librandi, Apr 10 2014 *)
LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 1, -1}, {2, 3, 4, 5, 11, 12, 13, 14, 18}, 70] (* Harvey P. Dale, Dec 16 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 05 2002
STATUS
approved