login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A084545 Alternate number system in base 5. 10
1, 2, 3, 4, 5, 11, 12, 13, 14, 15, 21, 22, 23, 24, 25, 31, 32, 33, 34, 35, 41, 42, 43, 44, 45, 51, 52, 53, 54, 55, 111, 112, 113, 114, 115, 121, 122, 123, 124, 125, 131, 132, 133, 134, 135, 141, 142, 143, 144, 145, 151, 152, 153, 154, 155, 211, 212, 213, 214, 215, 221, 222 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Hieronymus Fischer, Table of n, a(n) for n = 1..10000

EMIS, Mirror site for Southwest Journal of Pure and Applied Mathematics

R. R. Forslund, A logical alternative to the existing positional number system, Southwest Journal of Pure and Applied Mathematics, Vol. 1 1995 pp. 27-29.

R. R. Forslund, Positive Integer Pages [Broken link]

James E. Foster, A Number System without a Zero-Symbol, Mathematics Magazine, Vol. 21, No. 1. (1947), pp. 39-41.

Index entries for 10-automatic sequences.

FORMULA

From Hieronymus Fischer, Jun 06 and Jun 08 2012: (Start)

The formulas are designed to calculate base-10 numbers only using the digits 1..5.

a(n) = Sum_{j=0..m-1} (1 + b(j) mod 5)*10^j, where m = floor(log_5(4*n+1)), b(j) = floor((4*n+1-5^m)/(4*5^j)).

a(k*(5^n-1)/4) = k*(10^n-1)/9, for k = 1,2,3,4,5.

a((9*5^n-5)/4) = (14*10^n-5)/9 = 10^n + 5*(10^n-1)/9.

a((5^n-1)/4 - 1) = 5*(10^(n-1)-1)/9, n>1.

a(n) <= (10^log_5(4*n+1)-1)/9, equality holds for n=(5^k-1)/4, k>0.

a(n) > (5/10)*(10^log_5(4*n+1)-1)/9, n>0.

lim inf a(n)/10^log_5(4*n) = 1/18, for n --> infinity.

lim sup a(n)/10^log_5(4*n) = 1/9, for n --> infinity.

G.f.: g(x) = (x^(1/4)*(1-x))^(-1) sum_{j>=0} 10^j*z(j)^(5/4)*(1 - 6z(j)^5 + 5z(j)^6)/((1-z(j))(1-z(j)^5)), where z(j) = x^5^j.

Also: g(x) = (1/(1-x)) sum_{j>=0} (1-6(x^5^j)^5+5(x^5^j)^6)*x^5^j*f_j(x)/(1-x^5^j), where f_j(x) = 10^j*x^((5^j-1)/4)/(1-(x^5^j)^5). The f_j obey the recurrence f_0(x) = 1/(1-x^5), f_(j+1)(x) = 10x*f_j(x^5).

Also: g(x) = 1/(1-x))*(h_(5,0)(x) + h_(5,1)(x) + h_(5,2)(x) + h_(4,1)(x) + h_(5,4)(x) - 5*h_(5,5)(x)), where h_(5,k)(x) = sum_{j>=0} 10^j*x^((5^(j+1)-1)/4) * (x^5^j)^k/(1-(x^5^j)^5).

(End)

EXAMPLE

From Hieronymus Fischer, Jun 06 2012: (Start)

a(100)  = 345.

a(10^3) = 12445.

a(10^4) = 254445.

a(10^5) = 11144445.

a(10^6) = 223444445.

a(10^7) = 4524444445.

a(10^8) = 145544444445.

a(10^9) = 3521444444445. (End)

CROSSREFS

Cf. A007931, A007932, A052382, A084544, A046034, A089581, A084984, A001742, A001743, A001744, A202267, A202268, A014261, A014263.

Sequence in context: A265551 A316538 A283206 * A069908 A130640 A214653

Adjacent sequences:  A084542 A084543 A084544 * A084546 A084547 A084548

KEYWORD

nonn,base,easy

AUTHOR

Robert R. Forslund (forslund(AT)tbaytel.net), Jun 27 2003

EXTENSIONS

Offset set to 1 according to A007931, A007932 and more terms added by Hieronymus Fischer, Jun 06 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 11:32 EDT 2019. Contains 328056 sequences. (Running on oeis4.)