%I #21 Nov 16 2018 22:41:23
%S 2,3,4,5,11,12,13,14,18,19,20,21,27,28,29,30,34,35,36,37,43,44,45,46,
%T 50,51,52,53,59,60,61,62,66,67,68,69,75,76,77,78,82,83,84,85,91,92,93,
%U 94,98,99,100,101,107,108,109,110,114,115,116,117,123
%N Numbers congruent to +-2, +-3, +-4 or +-5 mod 16.
%H Vincenzo Librandi, <a href="/A069908/b069908.txt">Table of n, a(n) for n = 1..1000</a>
%H G. E. Andrews et al., <a href="http://dx.doi.org/10.1080/16073606.2001.9639228">q-Engel series expansions and Slater's identities</a> Quaestiones Math., 24 (2001), 403-416.
%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,1,-1).
%F G.f.: x*(2+x+x^2+x^3+6*x^4+x^5+x^6+x^7+2*x^8) / ( (1+x)*(x^2+1)*(x^4+1)*(x-1)^2 ). - _R. J. Mathar_, Oct 08 2011
%t Select[Range[200], MemberQ[{2, 3, 4, 5, 11, 12, 13, 14}, Mod[#, 16]]&] (* _Jean-François Alcover_, Apr 09 2014 *)
%t CoefficientList[Series[(2 + x + x^2 + x^3 + 6 x^4 + x^5 + x^6 + x^7 + 2 x^8)/((1 + x) (x^2 + 1) (x^4 + 1) (x - 1)^2), {x, 0, 80}], x] (* _Vincenzo Librandi_, Apr 10 2014 *)
%t LinearRecurrence[{1,0,0,0,0,0,0,1,-1},{2,3,4,5,11,12,13,14,18},70] (* _Harvey P. Dale_, Dec 16 2015 *)
%Y Cf. A069909, A069910, A069911.
%K nonn
%O 1,1
%A _N. J. A. Sloane_, May 05 2002