This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A069748 Numbers n such that n and n^3 are both palindromes. 5
 0, 1, 2, 7, 11, 101, 111, 1001, 10001, 10101, 11011, 100001, 101101, 110011, 1000001, 1001001, 1100011, 10000001, 10011001, 10100101, 11000011, 100000001, 100010001, 100101001, 101000101, 110000011, 1000000001, 1000110001 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS For an arithmetical function f, call the pairs (x,y) such that y = f(x) and x, y are palindromes the "palinpairs" of f. a(n) is then the sequence of abscissae of palinpairs of f(n) = n^3. Perhaps this sequence is the same as A002780, except for 2201. [Dmitry Kamenetsky, Apr 16 2009] For n>=5, there are no terms with digit sum 5. Conjecture: all terms belong to one of 3 disjoint classes of the following forms: 10^k+1, 10^(2*t)+10^t+1, t>0, and (10^u+1)*(10^v+1), u,v>0, with digit sums 2, 3 and 4 correspondingly. - Vladimir Shevelev, May 31 2011 LINKS V. Shevelev, Re: numbers whose cube is a palindrome, seqfan list, May 25 2011 MATHEMATICA isPalin[n_] := (n == FromDigits[Reverse[IntegerDigits[n]]]); Do[m = n^3; If[isPalin[n] && isPalin[m], Print[{n, m}]], {n, 1, 10^6}] PROG (PARI) ispal(n) = my(d=digits(n)); d == Vecrev(d); isok(n) = ispal(n) && ispal(n^3); \\ Michel Marcus, Dec 16 2018 CROSSREFS Intersection of A002113 and A002780. Sequence in context: A085315 A002780 A069885 * A064441 A110949 A226703 Adjacent sequences:  A069745 A069746 A069747 * A069749 A069750 A069751 KEYWORD base,nonn AUTHOR Joseph L. Pe, Apr 22 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 17 06:08 EDT 2019. Contains 328106 sequences. (Running on oeis4.)