login
A069750
a(1)=1; a(n+1) is the smallest integer such that 1/a(n+1) = 0.0...00a(n)xxxxx...
1
1, 6, 15, 63, 157, 633, 1578, 6334, 15786, 63344, 157866, 633445, 1578667, 6334455, 15786676, 63344554, 157866766, 633445544, 1578667666, 6334455446, 15786676667, 63344554464, 157866766678, 633445544643, 1578667666788
OFFSET
1,2
LINKS
FORMULA
a(1)=1; floor(10^n/a(n+1)) = a(n).
EXAMPLE
a(7)=1578 and 6334 is the smallest integer such that 1/6334 = 0.0001578(78118...), hence a(8)=6334.
MAPLE
R:= 1: x:= 1:
for i from 2 to 30 do
x:= floor(10^(i-1)/(x+1))+1;
R:= R, x;
od:
R; # Robert Israel, Sep 11 2024
CROSSREFS
Sequence in context: A012294 A219811 A255007 * A233450 A298374 A324973
KEYWORD
base,easy,nonn
AUTHOR
Benoit Cloitre, May 01 2002
STATUS
approved