OFFSET
1,2
COMMENTS
For an arithmetical function f, call the pairs (x,y) such that y = f(x) and x, y are palindromes the "palinpairs" of f. a(n) is then the sequence of abscissae of palinpairs of f(n) = phi(n).
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..766 (terms < 10^19)
EXAMPLE
phi(58085) = 46464, so 58085 is a term of the sequence.
MATHEMATICA
isPalin[n_] := (n == FromDigits[Reverse[IntegerDigits[n]]]); Do[m = EulerPhi[n]; If[isPalin[n] && isPalin[m], Print[{n, m}]], {n, 1, 10^6}]
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Joseph L. Pe, Apr 22 2002
EXTENSIONS
More terms from Jason Earls, May 07 2002
STATUS
approved