login
A069606
a(1) = 4; a(n) = smallest number such that the juxtaposition a(1)a(2)...a(n) is a prime.
24
4, 1, 9, 11, 19, 3, 3, 41, 51, 51, 87, 19, 63, 23, 13, 29, 3, 219, 183, 27, 27, 3, 3, 27, 217, 129, 381, 59, 163, 281, 169, 57, 77, 31, 9, 9, 243, 147, 21, 239, 39, 219, 693, 37, 143, 789, 9, 163, 219, 497, 51, 301, 149, 103, 117, 309, 591, 159, 741, 131, 541, 1377, 207
OFFSET
1,1
EXAMPLE
a(5) = 19 and the number 4191119 is a prime.
MATHEMATICA
a[1] = 4; a[n_] := a[n] = Block[{k = 1, c = IntegerDigits @ Table[ a[i], {i, n - 1}]}, While[ !PrimeQ[ FromDigits @ Flatten @ Append[c, IntegerDigits[k]]], k += 2]; k]; Table[ a[n], {n, 63}] (* Robert G. Wilson v, Aug 05 2005 *)
nxt[{jxt_, a_}]:=Module[{n=1}, While[CompositeQ[jxt*10^IntegerLength[n]+n], n++]; {jxt*10^IntegerLength[ n]+n, n}]; NestList[nxt, {4, 4}, 70][[;; , 2]] (* Harvey P. Dale, Oct 06 2023 *)
KEYWORD
nonn,base
AUTHOR
Amarnath Murthy, Mar 26 2002
EXTENSIONS
More terms from Jason Earls, Jun 13 2002
STATUS
approved