login
A092528
a(1) = 1; a(n) = smallest number such that the juxtaposition a(1)a(2)...a(n) is a prime.
14
1, 1, 3, 11, 1, 3, 3, 53, 13, 39, 9, 3, 21, 53, 79, 11, 19, 59, 27, 49, 21, 23, 211, 153, 189, 3, 161, 121, 167, 183, 193, 77, 21, 349, 107, 129, 343, 119, 241, 143, 37, 77, 31, 159, 183, 531, 1517, 7, 59, 159, 123, 9, 1513, 203, 343, 59, 9, 999, 813, 421, 209, 517, 3
OFFSET
1,3
EXAMPLE
The first few terms are 1,1,3,11,1,3,3,53,13,39,9,3. The next integer you can concatenate to the end of this to get a prime is 21 so the next term is 21. If you require terms to have all digits odd you would get 399 instead, giving A069604.
MATHEMATICA
nn[a_] := For[b = 1, ! PrimeQ[n], b = b + 1, n = a*10^Floor[Log[10, b] + 1]] (* o get the next number in the sequence if a is the concatenation of all previous. *) nnt[m_] := (t = 1; Table[c = nnn[t]; t = c[[2]]; c[[1]], {m}]) (* To get a table of the first n terms, ignoring a(1)=1*)
a[1] = 1; a[n_] := a[n] = Block[{k = 1, c = IntegerDigits @ Table[ a[i], {i, n - 1}]}, While[ !PrimeQ[ FromDigits @ Flatten @ Append[c, IntegerDigits[k]]], k += 2]; k]; Table[ a[n], {n, 63}] (* Robert G. Wilson v, Aug 05 2005 *)
KEYWORD
base,nonn
AUTHOR
Christer Mauritz Blomqvist (MauritzTortoise(AT)hotmail.com), Apr 08 2004
STATUS
approved