login
A069248
Number of positive divisors of n themselves divisible by largest prime that divides n.
1
0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 4, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 4, 1, 5, 2, 2, 2, 6, 1, 2, 2, 4, 1, 4, 1, 3, 3, 2, 1, 5, 2, 4, 2, 3, 1, 6, 2, 4, 2, 2, 1, 6, 1, 2, 3, 6, 2, 4, 1, 3, 2, 4, 1, 8, 1, 2, 4, 3, 2, 4, 1, 5, 4, 2, 1, 6, 2, 2, 2, 4, 1, 6, 2, 3, 2, 2, 2, 6, 1, 4, 3, 6
OFFSET
1,4
LINKS
FORMULA
a(n) = d(n)*E_n/(E_n + 1), where d(n) is the number of positive divisors of n and E_n is the exponent of the largest prime to divide n in the prime factorization of n.
EXAMPLE
The divisors of 12 which are themselves divisible by 3 (the largest prime dividing 12) are 3, 6 and 12. So the 12th term is 3.
MATHEMATICA
nd[n_]:=Module[{lp=FactorInteger[n][[-1, 1]]}, Count[Divisors[n], _?(Mod[ #, lp] == 0&)]]; Join[{0}, Array[nd, 100, 2]] (* Harvey P. Dale, May 05 2019 *)
a[n_] := Last[e = FactorInteger[n][[;; , 2]]]*Times @@ (1 + Most[e]); a[1] = 0; Array[a, 100] (* Amiram Eldar, Jul 09 2022 *)
PROG
(PARI) a(n) = if (n==1, 0, gp = vecmax(factor(n)[, 1]); sumdiv(n, d, ((d%gp) == 0))); \\ Michel Marcus, Feb 10 2017
CROSSREFS
Sequence in context: A324190 A098893 A302037 * A329378 A329617 A008481
KEYWORD
nonn
AUTHOR
Leroy Quet, Apr 08 2002
STATUS
approved