OFFSET
1,2
COMMENTS
Equivalently, k is relatively prime to the denominator of B(2k). Equivalently, there are no primes p such that p divides k and p-1 divides 2k. These equivalences follow from the von Staudt-Clausen and Sylvester-Lipschitz theorems.
REFERENCES
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 3rd ed., Oxford Univ. Press, 1954.
I. Sh. Slavutskii, A note on Bernoulli numbers, Jour. of Number Theory 53 (1995), 309-310.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..300
MAPLE
A069040 := proc(n)
option remember;
if n=1 then
1;
else
for k from procname(n-1)+1 do
if numer(bernoulli(2*k)) mod k = 0 then
return k;
end if;
end do:
end if;
end proc: # R. J. Mathar, Jan 06 2013
MATHEMATICA
testb[n_] := Select[First/@FactorInteger[n], Mod[2n, #-1]==0&]=={}; Select[Range[200], testb]
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Apr 03 2002
EXTENSIONS
More information from Dean Hickerson, Apr 26 2002
STATUS
approved