login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A067858 J_n(n), where J is the Jordan function, J_n(n) = n^n product{p|n}(1 - 1/p^n), the product is over the distinct primes, p, dividing n. 5
1, 3, 26, 240, 3124, 45864, 823542, 16711680, 387400806, 9990233352, 285311670610, 8913906892800, 302875106592252, 11111328602468784, 437893859848932344, 18446462598732840960, 827240261886336764176, 39346257879101671328376, 1978419655660313589123978 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..350

FORMULA

J_n(n) = sum{k|n} mu(n/k) k^n, where mu() is the Moebius function.

MAPLE

with(numtheory):

a:= n-> n^n*mul(1-1/p^n, p=factorset(n)):

seq(a(n), n=1..20);  # Alois P. Heinz, Jan 09 2015

MATHEMATICA

JordanTotient[n_, k_:1]:=DivisorSum[n, #^k*MoebiusMu[n/#]&]/; (n>0)&&IntegerQ[n]; A067858[n_]:=JordanTotient[n, n]; Array[A067858, 20]

CROSSREFS

Main diagonal of A059379, A059380.

Sequence in context: A037671 A037797 A071846 * A052141 A062793 A300398

Adjacent sequences:  A067855 A067856 A067857 * A067859 A067860 A067861

KEYWORD

nonn

AUTHOR

Leroy Quet, Feb 15 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 22 19:56 EST 2019. Contains 320403 sequences. (Running on oeis4.)