OFFSET
0,1
COMMENTS
This is the special case k=7 of sequences with exact mutual k-residues. In general, a(1)=k+1 and a(n)=min{m | m>a(n-1), mod(m,a(i))=k, i=1,...,n-1}. k=1 gives Sylvester's sequence A000058 and k=2 Fermat sequence A000215. - Seppo Mustonen, Sep 04 2005
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10
A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
Stanislav Drastich, Rapid growth sequences, arXiv:math/0202010 [math.GM], 2002.
S. W. Golomb, On certain nonlinear recurring sequences, Amer. Math. Monthly 70 (1963), 403-405.
S. Mustonen, On integer sequences with mutual k-residues
Seppo Mustonen, On integer sequences with mutual k-residues [Local copy]
FORMULA
a(n) ~ c^(2^n), where c = 3.3333858371760195832345950846454963835549715770476958790043961891683146201... . - Vaclav Kotesovec, Dec 17 2014
MATHEMATICA
RecurrenceTable[{a[0]==8, a[n]==a[n-1]*(a[n-1]-7)+7}, a, {n, 0, 10}] (* Vaclav Kotesovec, Dec 17 2014 *)
NestList[#^2-7#+7&, 8, 10] (* Harvey P. Dale, Jan 26 2025 *)
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Drastich Stanislav (drass(AT)spas.sk), Feb 05 2002
STATUS
approved