This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A067686 a(n) = a(n-1) * a(n-1) - B * a(n-1) + B, a(0) = 1 + B for B = 7. 3
 8, 15, 127, 15247, 232364287, 53993160246468367, 2915261353400811631533974206368127, 8498748758632331927648392184620600167779995785955324343380396911247 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS This is the special case k=7 of sequences with exact mutual k-residues. In general, a(1)=k+1 and a(n)=min{m | m>a(n-1), mod(m,a(i))=k, i=1,...,n-1}. k=1 gives Sylvester's sequence A000058 and k=2 Fermat sequence A000215. - Seppo Mustonen, Sep 04 2005 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..10 A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fib. Quart., 11 (1973), 429-437. Stanislav Drastich, Rapid growth sequences, arXiv:math/0202010 [math.GM], 2002. S. W. Golomb, On certain nonlinear recurring sequences, Amer. Math. Monthly 70 (1963), 403-405. S. Mustonen, On integer sequences with mutual k-residues FORMULA a(n) ~ c^(2^n), where c = 3.3333858371760195832345950846454963835549715770476958790043961891683146201... . - Vaclav Kotesovec, Dec 17 2014 MATHEMATICA RecurrenceTable[{a[0]==8, a[n]==a[n-1]*(a[n-1]-7)+7}, a, {n, 0, 10}] (* Vaclav Kotesovec, Dec 17 2014 *) CROSSREFS Cf. B=1: A000058 (Sylvester's sequence), B=2: A000215 (Fermat numbers), B=3: A000289, B=4: A000324, B=5: A001543, B=6: A001544. Column k=7 of A177888. Sequence in context: A110459 A132374 A234534 * A283821 A145219 A002406 Adjacent sequences:  A067683 A067684 A067685 * A067687 A067688 A067689 KEYWORD nonn,easy AUTHOR Drastich Stanislav (drass(AT)spas.sk), Feb 05 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 19 06:47 EDT 2019. Contains 324218 sequences. (Running on oeis4.)