This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2017 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A000289 A nonlinear recurrence: a(n) = a(n-1)^2 - 3*a(n-1) + 3 (for n>1). (Formerly M3316 N1333) 11
 1, 4, 7, 31, 871, 756031, 571580604871, 326704387862983487112031, 106735757048926752040856495274871386126283608871, 11392521832807516835658052968328096177131218666695418950023483907701862019030266123104859068031 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS An infinite coprime sequence defined by recursion. - Michael Somos, Mar 14 2004 This is the special case k=3 of sequences with exact mutual k-residues. In general, a(1)=k+1 and a(n)=min{m | m>a(n-1), mod(m,a(i))=k, i=1,...,n-1}. k=1 gives Sylvester's sequence A000058 and k=2 Fermat sequence A000215. - Seppo Mustonen, Sep 04 2005 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS John Cerkan, Table of n, a(n) for n = 0..12 A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fib. Quart., 11 (1973), 429-437. S. W. Golomb, On certain nonlinear recurring sequences, Amer. Math. Monthly 70 (1963), 403-405. R. Mestrovic, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670 [math.HO], 2012 - From N. J. A. Sloane, Jun 13 2012 S. Mustonen, On integer sequences with mutual k-residues FORMULA a(n) = A005267(n) + 2 (for n>0). a(n) = ceiling(c^(2^n)) + 1 where c = A077141. - Benoit Cloitre, Nov 29 2002 For n>0, a(n) = 3 + Product_{i=0..n-1} a(i). - Vladimir Shevelev, Dec 08 2010 MATHEMATICA Join[{1}, RecurrenceTable[{a[n] == a[n-1]^2 - 3*a[n-1] + 3, a[1] == 4}, a, {n, 1, 9}]] (* Jean-François Alcover, Feb 06 2016 *) PROG (PARI) a(n)=if(n<2, max(0, 1+3*n), a(n-1)^2-3*a(n-1)+3) CROSSREFS Cf. A000058. Sequence in context: A156228 A218959 A283332 * A241426 A271676 A149089 Adjacent sequences:  A000286 A000287 A000288 * A000290 A000291 A000292 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 17:22 EST 2018. Contains 318023 sequences. (Running on oeis4.)