This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001544 A nonlinear recurrence. (Formerly M4346 N1820) 5
 1, 7, 13, 97, 8833, 77968897, 6079148431583233, 36956045653220845240164417232897, 1365749310322943329964576677590044473746108255675592519835615233 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS This is the special case k=6 of sequences with exact mutual k-residues. In general, a(1)=k+1 and a(n)=min{m | m>a(n-1), mod(m,a(i))=k, i=1,...,n-1}. k=1 gives Sylvester's sequence A000058 and k=2 Fermat sequence A000215. - Seppo Mustonen, Sep 04 2005 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Indranil Ghosh, Table of n, a(n) for n = 0..11 S. W. Golomb, On certain nonlinear recurring sequences, Amer. Math. Monthly 70 (1963), 403-405. R. Mestrovic, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670 [math.HO], 2012. - N. J. A. Sloane, Jun 13 2012 S. Mustonen, On integer sequences with mutual k-residues FORMULA a(0)=1, a(1)=7, a(n)=a(n-1)^2-6*a(n-1)+6 if n>1. a(n) ~ c^(2^n), where c = 1.76450357631319101484804524709844019487003729926754942591419313922841785792... . - Vaclav Kotesovec, Dec 17 2014 MATHEMATICA Flatten[{1, RecurrenceTable[{a[1]==7, a[n]==a[n-1]*(a[n-1]-6)+6}, a, {n, 1, 10}]}] (* Vaclav Kotesovec, Dec 17 2014 *) PROG (PARI) a(n)=if(n<1, n==0, if(n==1, 7, n=a(n-1); n^2-6*n+6)) CROSSREFS Column k=6 of A177888. - Alois P. Heinz, Nov 07 2012 Sequence in context: A110293 A253333 A039687 * A202152 A136720 A323468 Adjacent sequences:  A001541 A001542 A001543 * A001545 A001546 A001547 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 21 00:39 EDT 2019. Contains 325189 sequences. (Running on oeis4.)