login
A067187
Numbers that can be expressed as the sum of two primes in exactly one way.
17
4, 5, 6, 7, 8, 9, 12, 13, 15, 19, 21, 25, 31, 33, 39, 43, 45, 49, 55, 61, 63, 69, 73, 75, 81, 85, 91, 99, 103, 105, 109, 111, 115, 129, 133, 139, 141, 151, 153, 159, 165, 169, 175, 181, 183, 193, 195, 199, 201, 213, 225, 229, 231, 235, 241, 243, 253, 259, 265, 271
OFFSET
1,1
COMMENTS
All primes + 2 are terms of this sequence. Is 12 the last even term? - Frank Ellermann, Jan 17 2002
A048974, A052147, A067187 and A088685 are very similar after dropping terms less than 13. - Eric W. Weisstein, Oct 10 2003
Values of n such that A061358(n)=1. - Emeric Deutsch, Apr 03 2006
EXAMPLE
4 is a term as 4 = 2+2, 15 is a term as 15 = 13+2.
MAPLE
g:=sum(sum(x^(ithprime(i)+ithprime(j)), i=1..j), j=1..80): gser:=series(g, x=0, 280): a:=proc(n) if coeff(gser, x^n)=1 then n else fi end: seq(a(n), n=1..272); # Emeric Deutsch, Apr 03 2006
MATHEMATICA
cQ[n_]:=Module[{c=0}, Do[If[PrimeQ[n-i]&&PrimeQ[i], c++], {i, 2, n/2}]; c==1]; Select[Range[4, 271], cQ[#]&] (* Jayanta Basu, May 22 2013 *)
CROSSREFS
Subsequence of A014091.
Numbers that can be expressed as the sum of two primes in k ways for k=0..10: A014092 (k=0), this sequence (k=1), A067188 (k=2), A067189 (k=3), A067190 (k=4), A067191 (k=5), A066722 (k=6), A352229 (k=7), A352230 (k=8), A352231 (k=9), A352233 (k=10).
Sequence in context: A321025 A047569 A039062 * A321353 A161674 A285623
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Jan 10 2002
EXTENSIONS
Edited by Frank Ellermann, Jan 17 2002
STATUS
approved