login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A066537
Number of planar graphs on n labeled nodes.
8
1, 1, 2, 8, 64, 1023, 32071, 1823707, 163947848, 20402420291, 3209997749284, 604611323732576, 131861300077834966, 32577569614176693919, 8977083127683999891824, 2726955513946123452637877, 904755724004585279250537376, 325403988657293080813790670641
OFFSET
0,3
COMMENTS
Precise numbers derived from numbers of 3-connected, 2-connected and 1-connected planar labeled graphs. Details and more entries in Bodirsky et al. Some bounds on the asymptotics are known, see e.g. Taraz et al.
REFERENCES
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 419.
LINKS
Keith M. Briggs and Gheorghe Coserea, Table of n, a(n) for n = 0..126, terms 0..42 from Keith M. Briggs.
M. Bodirsky, C. Groepl and M. Kang, Generating Labeled Planar Graphs Uniformly At Random, ICALP03 Eindhoven, LNCS 2719, Springer Verlag (2003), 1095 - 1107.
M. Bodirsky, C. Groepl and M. Kang, Generating Labeled Planar Graphs Uniformly At Random, Theoretical Computer Science, Volume 379, Issue 3, 15 June 2007, Pages 377-386.
O. Gimenez and M. Noy, Asymptotic enumeration and limit laws of planar graphs, arXiv:math/0501269 [math.CO], 2005.
Yu Nakahata, Jun Kawahara, Takashi Horiyama, Shin-ichi Minato, Implicit Enumeration of Topological-Minor-Embeddings and Its Application to Planar Subgraph Enumeration, arXiv:1911.07465 [cs.DS], 2019.
A. Taraz, D. Osthus and H. J. Proemel, On random planar graphs, the number of planar graphs and their triangulations Journal of Combinatorial Theory, Series B, 88 (2003), 119-134.
FORMULA
Recurrence known, see Bodirsky et al.
a(n) ~ g * n^(-7/2) * gamma^n * n!, where g=0.000004260938569161439...(A266391) and gamma=27.2268777685...(A266390) (see Gimenez and Noy).
PROG
(PARI)
Q(n, k) = { \\ c-nets with n-edges, k-vertices
if (k < 2+(n+2)\3 || k > 2*n\3, return(0));
sum(i=2, k, sum(j=k, n, (-1)^((i+j+1-k)%2)*binomial(i+j-k, i)*i*(i-1)/2*
(binomial(2*n-2*k+2, k-i)*binomial(2*k-2, n-j) -
4*binomial(2*n-2*k+1, k-i-1)*binomial(2*k-3, n-j-1))));
};
A100960_ser(N) = {
my(x='x+O('x^(3*N+1)), t='t+O('t^(N+4)),
q=t*x*Ser(vector(3*N+1, n, Polrev(vector(min(N+3, 2*n\3), k, Q(n, k)), 't))),
d=serreverse((1+x)/exp(q/(2*t^2*x) + t*x^2/(1+t*x))-1),
g2=intformal(t^2/2*((1+d)/(1+x)-1)));
serlaplace(Ser(vector(N, n, subst(polcoeff(g2, n, 't), 'x, 't)))*'x);
};
A096331_seq(N) = Vec(subst(A100960_ser(N+2), 't, 1));
A096332_seq(N) = {
my(x='x+O('x^(N+3)), b=x^2/2+serconvol(Ser(A096331_seq(N))*x^3, exp(x)));
Vec(serlaplace(intformal(serreverse(x/exp(b'))/x)));
};
A066537_seq(N) = {
my(x='x+O('x^(N+3)));
Vec(serlaplace(exp(serconvol(Ser(A096332_seq(N))*'x, exp(x)))));
};
A066537_seq(15) \\ Gheorghe Coserea, Aug 10 2017
CROSSREFS
KEYWORD
nice,nonn
AUTHOR
Aart Blokhuis (aartb(AT)win.tue.nl), Jan 08 2002
EXTENSIONS
More terms from Manuel Bodirsky (bodirsky(AT)informatik.hu-berlin.de), Sep 15 2003
Entry revised by N. J. A. Sloane, Jun 17 2006
STATUS
approved