OFFSET
1,7
COMMENTS
Inverse Euler transform of A078012. (The inverse of 1-1/(p^3-p^2) is p^2(p-1)/(p^3-p^2-1) = 1-1/(1+p^2-p^3). Setting 1/p=x gives (1-x)/(1-x-x^3), the g.f. of A078012.) - R. J. Mathar, Jul 26 2010
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..5000
R. J. Mathar, Hardy-Littlewood constants embedded into infinite products over all positive integers, arXiv:0903.2514 [math.NT], 2009-2011, sequence gamma_{2,j}^(A).
G. Niklasch, Some number theoretical constants: 1000-digit values [Cached copy]
FORMULA
a(n) ~ r^n / n, where r = A092526 = 1.465571231876768... - Vaclav Kotesovec, Jun 13 2020
EXAMPLE
x^3 + x^4 + x^5 + x^6 + 2*x^7 + 2*x^8 + 3*x^9 + 4*x^10 + 6*x^11 + 7*x^12 + ...
MAPLE
read("transforms") ;
A078012 := proc(n) option remember; if n <3 then op(n+1, [1, 0, 0]) ; else procname(n-1)+procname(n-3) ; end if; end proc:
a078012 := [seq(A078012(n), n=1..80)] ; EULERi(%) ;
# R. J. Mathar, Jul 26 2010
MATHEMATICA
A078012[n_] := A078012[n] = If[n<3, {1, 0, 0}[[n+1]], A078012[n-1] + A078012[n-3]]; a078012 = Array[A078012, m = 80];
s = {}; For[i = 1, i <= m, i++, AppendTo[s, i*a078012[[i]] - Sum[s[[d]] * a078012[[i-d]], {d, i-1}]]]; Table[Sum[If[Divisible[i, d], MoebiusMu[i/d ], 0]*s[[d]], {d, 1, i}]/i, {i, m}] (* Jean-François Alcover, Apr 15 2016, after R. J. Mathar *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 15 2001
EXTENSIONS
More terms from R. J. Mathar, Jul 26 2010
STATUS
approved