

A064414


Fix a > 0, b > 0, k > 0 and define G_1 = a, G_2 = b, G_k = G_(k1) + G_(k2); sequence gives n such that for any (a,b), some G_k is divisible by n.


6



1, 2, 3, 4, 6, 7, 9, 14, 23, 27, 43, 49, 67, 81, 83, 86, 98, 103, 127, 134, 163, 167, 206, 223, 227, 243, 254, 283, 326, 343, 367, 383, 443, 446, 463, 467, 487, 503, 523, 529, 547, 566, 587, 607, 643, 647, 683, 686, 727, 729, 734, 787, 823, 827, 863, 883, 887
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


REFERENCES

Teruo Nishiyama, Fibonacci numbers, SuuriKagaku, No. 285, March 1987, 6769, (in Japanese).


LINKS

Table of n, a(n) for n=1..57.


EXAMPLE

If a = 1, b = 4, then G_k is (1,4,5,9,14,23,....) and no G_k is a multiple of 11. Therefore 11 is not in the sequence.


MATHEMATICA

g[a_, b_, k_] := Fibonacci[k2]*a + Fibonacci[k1]*b; ok[n_] := Catch[ Do[ test = Catch[ Do[ If[ Divisible[g[a, b, k], n], Throw[True]], {k, 1, 2*n}]]; If[test == Null, Throw[False]], {a, 1, Floor[Sqrt[n]]}, {b, 1, Floor[Sqrt[n]]}]] ; Reap[ Do[ If[ok[n] == Null, Print[n]; Sow[n]], {n, 1, 1000}]][[2, 1]] (* JeanFrançois Alcover, Jul 19 2012 *)


CROSSREFS

Prime members are in A000057.
Sequence in context: A055494 A239115 A165773 * A224482 A002475 A208281
Adjacent sequences: A064411 A064412 A064413 * A064415 A064416 A064417


KEYWORD

easy,nonn,nice


AUTHOR

Naohiro Nomoto, Oct 15 2001


EXTENSIONS

More terms from David Wasserman, Jul 18 2002


STATUS

approved



