OFFSET
1,2
COMMENTS
LINKS
B. Avila and T. Khovanova, Free Fibonacci Sequences, arXiv preprint arXiv:1403.4614 [math.NT], 2014 and J. Int. Seq. 17 (2014) # 14.8.5.
FORMULA
Conjecture: a(n) = Sum_{d|n} phi(d)*A001177(d), where phi = Euler's totient function (A000010). - Logan J. Kleinwaks, Oct 28 2017
Sum_{d|n} phi(d)*A001177(d) = Sum_{k=1..n} A001177(n/gcd(n,k)) = Sum_{k=1..n} A001177(gcd(n,k))phi(gcd(n,k)/phi(n/gcd(n,k)). - Richard L. Ollerton, May 09 2021
EXAMPLE
The sequence 2,1,3,4,2,1 is the sequence of Lucas numbers modulo 5. Lucas numbers are never divisible by 5. The 4 pairs (2,1), (1,3), (3,4), (4,2) are the only pairs that can generate a sequence modulo 5 that doesn't contain zeros. Thus, a(5) = 21, as 21 other pairs generate sequences that do contain zeros.
Any Fibonacci like sequence contains elements divisible by 2, 3, or 4. Thus, a(2) = 4, a(3) = 9, a(4) = 16.
MATHEMATICA
fibLike[list_] := Append[list, list[[-1]] + list[[-2]]]; Table[k^2 -Count[Flatten[Table[Count[Nest[fibLike, {n, m}, k^2]/k, _Integer], {n, k - 1}, {m, k - 1}]], 0], {k, 70}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Brandon Avila and Tanya Khovanova, Nov 27 2013
STATUS
approved