login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064087
Generalized Catalan numbers C(4; n).
12
1, 1, 5, 41, 413, 4641, 55797, 702297, 9137549, 121909457, 1658755685, 22929591433, 321111942781, 4546112358529, 64958195967957, 935566629270201, 13567825195172973, 197957440018622769, 2903721563443327557, 42796201522669935081, 633443408407612143453
OFFSET
0,3
COMMENTS
a(n+1) = Y_{n}(n+1) = Z_{n} in the Derrida et al. 1992 reference (see A064094) for alpha=4, beta=1 (or alpha=1, beta=4).
FORMULA
G.f.: (1+4*x*c(4*x)/3)/(1+x/3) = 1/(1-x*c(4*x)) with c(x) g.f. of Catalan numbers A000108.
a(n) = (1/n)*Sum_{m=0..n-1} (n-m)*binomial(n-1+m, m)*(4^m) = ((-1/3)^n)*(1 - 4*Sum_{k=0..n-1} C(k)*(-12)^k), n >= 1, a(0) = 1, with C(n) = A000108(n) (Catalan).
a(n) = Sum_{k=0...n} A059365(n, k)*4^(n-k). - Philippe Deléham, Jan 19 2004
D-finite with recurrence: 3*n*a(n) + (-47*n+72)*a(n-1) + 8*(-2*n+3)*a(n-2) = 0. - R. J. Mathar, Jun 07 2013 [verified by Georg Fischer, Jul 06 2021]
a(n) = hypergeometric([1-n, n], [-n], 4) for n > 0. - Peter Luschny, Nov 30 2014
a(n) ~ 2^(4*n + 2) / (49*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 10 2019
MATHEMATICA
a[0] = 1; a[n_] := Sum[(n - m)*Binomial[n - 1 + m, m]*4^m/n, {m, 0, n - 1}]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Jul 09 2013 *)
PROG
(PARI)
a(n) = if(n<0, 0, polcoeff(serreverse((x-3*x^2)/(1+x)^2+O(x^(n+1))), n)) /* Ralf Stephan */
(Sage)
def a(n):
if n==0: return 1
return hypergeometric([1-n, n], [-n], 4).simplify()
[a(n) for n in range(24)] # Peter Luschny, Nov 30 2014
CROSSREFS
Cf. A064063 (C(3; n)).
Sequence in context: A378957 A199684 A177506 * A329123 A375437 A285064
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Sep 13 2001
STATUS
approved