login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A064088 Generalized Catalan numbers C(5; n). 4
1, 1, 6, 61, 766, 10746, 161376, 2537781, 41260086, 687927166, 11698135396, 202104763026, 3537486504556, 62595852983236, 1117926476207316, 20124876291104421, 364797768048805926, 6652740911381353206 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(n+1)= Y_{n}(n+1)= Z_{n}, n >= 0, in the Derrida et al. 1992 reference (see A064094) for alpha=5, beta =1 (or alpha=1, beta=5).

LINKS

Table of n, a(n) for n=0..17.

FORMULA

G.f.: (1+5*x*c(5*x)/4)/(1+x/4) = 1/(1-x*c(5*x)) with c(x) g.f. of Catalan numbers A000108.

a(n)= sum((n-m)*binomial(n-1+m, m)*(5^m)/n, m=0..n-1) = ((-1/4)^n)*(1-5*sum(C(k)*(-20)^k, k=0..n-1)), n >= 1, a(0) := 1; with C(n)=A000108(n) (Catalan).

a(n) = Sum{ k= 0...n, A059365(n, k)*5^(n-k) } . - Philippe Deléham, Jan 19 2004

Contribution from Gary W. Adamson, Jul 18 2011: (Start)

a(n) = upper left term in M^n, M = an infinite square production matrix as follows:

  1, 1, 0, 0, 0, 0,...

  5, 5, 5, 0, 0, 0,...

  5, 5, 5, 5, 0, 0,...

  5, 5, 5, 5, 5, 0,...

  5, 5, 5, 5, 5, 5,...

... (end)

Conjecture: 4*n*a(n) +(-79*n+120)*a(n-1) +10*(-2*n+3)*a(n-2)=0. - R. J. Mathar, Jun 07 2013

MATHEMATICA

a[0] = 1; a[n_] := Sum[(n - m)*Binomial[n - 1 + m, m]*5^m/n, {m, 0, n - 1}]; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Jul 09 2013 *)

PROG

(PARI) a(n)=if(n<0, 0, polcoeff(serreverse((x-4*x^2)/(1+x)^2+O(x^(n+1))), n)) /* Ralf Stephan */

CROSSREFS

A064087 (C(4, n))

Sequence in context: A236670 A142970 A034659 * A191803 A259271 A047737

Adjacent sequences:  A064085 A064086 A064087 * A064089 A064090 A064091

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Sep 13 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 01:01 EDT 2018. Contains 316297 sequences. (Running on oeis4.)