login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A063750
Number of divisors (A000005) of the Wonderful Demlo numbers A002477.
1
1, 3, 9, 9, 9, 243, 9, 81, 45, 81, 9, 2187, 27, 81, 729, 729, 9, 10935, 3, 2187, 2187, 1215, 3, 59049, 243, 729, 567, 6561, 243, 1594323, 27, 177147, 729, 729, 2187, 295245, 27, 27, 729, 177147, 81, 7971615, 81, 98415, 32805, 729
OFFSET
1,2
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..352 (terms 1..80 from Harry J. Smith)
FORMULA
a(n) = A000005(A002477(n)) = d(((10^n-1)/9)^2). - M. F. Hasler, Nov 18 2017
a(n) = A048691(A000042(n)). - Amiram Eldar, Nov 19 2024
MAPLE
a:=n->((10^n-1)/9)^2: A063750:=[seq(numtheory[tau](a(n)), n=1..50)]; # Muniru A Asiru, Feb 17 2018
MATHEMATICA
Array[DivisorSigma[0, FromDigits[PadRight[{}, #, 1]]^2] &, 46] (* Michael De Vlieger, Nov 18 2017, after Harvey P. Dale at A002477 *)
PROG
(PARI) vector(45, n, numdiv((10^n\9)^2) ) \\ Edited by M. F. Hasler, Nov 18 2017
(PARI) apply( A063750=n->numdiv((10^n\9)^2), [1..80]) \\ M. F. Hasler, Nov 18 2017
(GAP) a:=n->((10^n-1)/9)^2;; A063750:=List([1..50], n->Tau(a(n))); # Muniru A Asiru, Feb 17 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Jason Earls, Aug 11 2001
EXTENSIONS
Edited and offset corrected by M. F. Hasler, Nov 18 2017
STATUS
approved