This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A063748 Greatest x that is a solution to x-phi(x)=n or zero if there is no solution, where phi(x) is Euler's totient function. 3
 4, 9, 8, 25, 10, 49, 16, 27, 0, 121, 22, 169, 26, 55, 32, 289, 34, 361, 38, 85, 30, 529, 46, 133, 0, 187, 52, 841, 58, 961, 64, 253, 0, 323, 68, 1369, 74, 391, 76, 1681, 82, 1849, 86, 493, 70, 2209, 94, 589, 0, 667, 0, 2809, 106, 703, 104, 697, 0, 3481, 118, 3721, 122 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 COMMENTS See A051953 for x-phi(x), the cototient function. Note that a(n)=0 for n in A005278. Also note that n=1 has an infinite number of solutions. If n is prime, then a(n)=n^2. If n is even, then a(n)<=2n. In particular, if n=p+1 for a prime p, then a(n)=2n-2. Also, if n=2^k, then a(n)=2n. If n>9 is odd and composite, then a(n)=pq, with p>q odd primes with p+q=n+1 and p-q minimal. We can take p=A078496((n+1)/2) and q=A078587((n+1)/2). LINKS T. D. Noe, Table of n, a(n) for n=2..1000 FORMULA a(n)=Max{x : A051953(x)=n} if the inverse set is not empty; a(n)=0 if no inverse exists. EXAMPLE For n=15, the solutions are x=39 and x=55, so a(15)=55. Note that 55=5*11 and 5+11=n+1. MATHEMATICA nn=10^4; lim=Floor[Sqrt[nn]]; mx=Table[0, {lim}]; Do[c=n-EulerPhi[n]; If[0 0], k--]; k], {n, 2, 62}] (* Michael De Vlieger, Mar 17 2017 *) CROSSREFS Cf. A000010, A051953. Cf. A063507 (least solution to x-phi(x)=n), A063740 (number of solutions to x-phi(x)=n). Sequence in context: A289280 A077662 A063718 * A121920 A318279 A065642 Adjacent sequences:  A063745 A063746 A063747 * A063749 A063750 A063751 KEYWORD nonn AUTHOR Labos Elemer, Aug 13 2001 EXTENSIONS Corrected and edited by T. D. Noe, Oct 30 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 19 20:29 EDT 2019. Contains 321332 sequences. (Running on oeis4.)