login
A063411
Number of cyclic subgroups of order 8 of general affine group AGL(n,2).
0
0, 0, 0, 5040, 6249600, 15958978560, 138492255928320, 3264016697241108480, 167083534977568918732800, 26809984170742141560784158720, 15381567503446460704398211326935040
OFFSET
1,4
COMMENTS
Number of cyclic subgroups of order m in general affine group AGL(n,2) is 1/phi(m)*Sum_{d|m} mu(m/d)*b(n,d), where b(n,d) is number of solutions to x^d=1 in AGL(n,2).
FORMULA
a(n) = (A063391(n)-A063387(n))/4.
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Jul 17 2001
STATUS
approved