login
A063410
Number of cyclic subgroups of order 7 of general affine group AGL(n,2).
0
0, 0, 64, 7680, 634880, 4555898880, 36661900345344, 199424098393128960, 5767554639734568386560, 2536966895379879201142210560, 884897682352177233989316141645824
OFFSET
1,3
COMMENTS
Number of cyclic subgroups of order m in general affine group AGL(n,2) is 1/phi(m)*Sum_{d|m} mu(m/d)*b(n,d), where b(n,d) is number of solutions to x^d=1 in AGL(n,2).
FORMULA
a(n) = (A063390(n)-1)/6.
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Jul 17 2001
STATUS
approved