

A063410


Number of cyclic subgroups of order 7 of general affine group AGL(n,2).


0



0, 0, 64, 7680, 634880, 4555898880, 36661900345344, 199424098393128960, 5767554639734568386560, 2536966895379879201142210560, 884897682352177233989316141645824
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Number of cyclic subgroups of order m in general affine group AGL(n,2) is 1/phi(m)*Sum_{dm} mu(m/d)*b(n,d), where b(n,d) is number of solutions to x^d=1 in AGL(n,2).


LINKS

Table of n, a(n) for n=1..11.
V. Jovovic, Cycle index of general affine group AGL(n,2)


FORMULA

a(n) = (A063390(n)1)/6.


CROSSREFS

Cf. A063406A063413, A063385A063393, A062710.
Sequence in context: A180377 A013995 A264007 * A075417 A084004 A264016
Adjacent sequences: A063407 A063408 A063409 * A063411 A063412 A063413


KEYWORD

nonn


AUTHOR

Vladeta Jovovic, Jul 17 2001


STATUS

approved



