login
A063406
Number of cyclic subgroups of order 3 of general affine group AGL(n,2).
8
0, 4, 112, 3136, 484096, 153545728, 72255188992, 169225143107584, 767806696376172544, 5846826552577416232960, 211692077904149369184059392, 14577670180222125357773973618688
OFFSET
1,2
COMMENTS
Number of cyclic subgroups of order m in general affine group AGL(n,2) is 1/phi(m)*Sum_{d|m} mu(m/d)*b(n,d), where b(n,d) is number of solutions to x^d=1 in AGL(n,2).
FORMULA
a(n) = (A063386(n)-1)/2.
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Jul 17 2001
STATUS
approved