login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062020
a(n) = Sum_{i=1..n} Sum_{j=1..i} (prime(i) - prime(j)).
6
0, 1, 6, 17, 44, 81, 142, 217, 324, 485, 666, 913, 1208, 1529, 1906, 2373, 2936, 3533, 4238, 5019, 5840, 6787, 7822, 8995, 10360, 11825, 13342, 14967, 16648, 18445, 20662, 23003, 25536, 28135, 31074, 34083, 37308, 40755, 44354, 48187, 52260
OFFSET
1,3
LINKS
FORMULA
a(n) = a(n-1) + n*prime(n) - Sum_{i = 1..n} prime(i), with a(0) = 0.
a(n) = 2*a(n-1) - a(n-2) + (n-1)*(prime(n) - prime(n-1)), with a(1) = 0, a(2) = 1.
a(n) = Sum_{j=1..n} (2*j - (n+1))*prime(j) = 2*A014285(n) - (n+1)*A007504(n). - G. C. Greubel, May 04 2022
EXAMPLE
a(3) = (5-2) + (5-3) + (3-2) = 6.
MATHEMATICA
a[n_]:= a[n]= If[n<3, (n-1), 2*a[n-1] -a[n-2] +(n-1)*(Prime[n] -Prime[n-1])];
Table[a[n], {n, 50}] (* G. C. Greubel, May 04 2022 *)
PROG
(SageMath)
@CachedFunction
def a(n): # A062020
if (n<3): return (n-1)
else: return 2*a(n-1) - a(n-2) + (n-1)*(nth_prime(n) - nth_prime(n-1))
[a(n) for n in (1..50)] # G. C. Greubel, May 04 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Jun 02 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Jun 05 2001
Name edited by G. C. Greubel, May 04 2022
STATUS
approved