login
A061697
Generalized Bell numbers.
1
1, 0, 0, 1, 1, 1, 201, 1226, 5587, 493333, 8910253, 109739620, 6832444928, 251336859489, 6402632091649, 369288128260091, 21333939590516867, 941843896620169405, 60266201588496408645, 4623833509894543300868, 309412778502377193367456, 24102475277979402591991181
OFFSET
0,7
LINKS
J.-M. Sixdeniers, K. A. Penson and A. I. Solomon, Extended Bell and Stirling Numbers From Hypergeometric Exponentiation, J. Integer Seqs. Vol. 4 (2001), #01.1.4.
FORMULA
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(BesselI(0,2*sqrt(x)) - 1 - x - x^2/4). - Ilya Gutkovskiy, Jul 12 2020
CROSSREFS
Sequence in context: A202771 A183350 A226566 * A371109 A371057 A305724
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 19 2001
EXTENSIONS
More terms from Ilya Gutkovskiy, Jul 12 2020
STATUS
approved