login
A061700
Generalized Bell numbers.
1
1, 0, 0, 1, 1, 1, 4001, 42876, 347117, 792865081, 37062990505, 1164982989754, 2135094241854476, 289654511654619255, 24938050464296749001, 41388115708273073076689, 12793631315199589229518093, 2452257460931091883072686073, 3961922987460317585057396895353
OFFSET
0,7
LINKS
J.-M. Sixdeniers, K. A. Penson and A. I. Solomon, Extended Bell and Stirling Numbers From Hypergeometric Exponentiation, J. Integer Seqs. Vol. 4 (2001), #01.1.4.
FORMULA
Sum_{n>=0} a(n) * x^n / (n!)^3 = exp(Sum_{n>=3} x^n / (n!)^3). - Ilya Gutkovskiy, Jul 12 2020
CROSSREFS
Sequence in context: A236079 A045262 A203088 * A218641 A092722 A034306
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 19 2001
EXTENSIONS
More terms from Ilya Gutkovskiy, Jul 12 2020
STATUS
approved