login
Generalized Bell numbers.
1

%I #11 Jul 12 2020 19:34:31

%S 1,0,0,1,1,1,201,1226,5587,493333,8910253,109739620,6832444928,

%T 251336859489,6402632091649,369288128260091,21333939590516867,

%U 941843896620169405,60266201588496408645,4623833509894543300868,309412778502377193367456,24102475277979402591991181

%N Generalized Bell numbers.

%H J.-M. Sixdeniers, K. A. Penson and A. I. Solomon, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL4/SIXDENIERS/bell.html">Extended Bell and Stirling Numbers From Hypergeometric Exponentiation</a>, J. Integer Seqs. Vol. 4 (2001), #01.1.4.

%F Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(BesselI(0,2*sqrt(x)) - 1 - x - x^2/4). - _Ilya Gutkovskiy_, Jul 12 2020

%Y Cf. A023998, A061696.

%K nonn

%O 0,7

%A _N. J. A. Sloane_, Jun 19 2001

%E More terms from _Ilya Gutkovskiy_, Jul 12 2020