login
A061346
Odd numbers that are neither primes nor prime powers.
10
15, 21, 33, 35, 39, 45, 51, 55, 57, 63, 65, 69, 75, 77, 85, 87, 91, 93, 95, 99, 105, 111, 115, 117, 119, 123, 129, 133, 135, 141, 143, 145, 147, 153, 155, 159, 161, 165, 171, 175, 177, 183, 185, 187, 189, 195, 201, 203, 205, 207, 209, 213, 215, 217, 219, 221
OFFSET
1,1
COMMENTS
Odd numbers with at least two distinct prime factors. - N. J. A. Sloane, Oct 15 2022
Odd leg of more than one primitive Pythagorean triangles. For smallest odd leg common to 2^n PPTs, see A070826. - Lekraj Beedassy, Jul 12 2006
Numbers that can be factored by Shor's algorithm. - Charles R Greathouse IV, Mar 05 2012
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
a(n) ~ 2n. - Charles R Greathouse IV, Aug 20 2012
MAPLE
select(t -> nops(ifactors(t)[2]) > 1, [seq(2*i+1, i=1..1000)]); # Robert Israel, Dec 14 2014
MATHEMATICA
Select[Range[1, 249, 2], Length[FactorInteger[#]] > 1 &] (* Alonso del Arte, Jan 30 2012 *)
Select[ Range[1, 475, 2], PrimeNu@# > 1 &] (* Robert G. Wilson v, Dec 12 2014 *)
PROG
(ARIBAS): for k := 3 to 253 by 2 do ar := factorlist(k); if ar[0] < ar[length(ar)-1] then write(k, " ") end; end;
(PARI) is(n)=ispower(n, , &n); n%2&&!isprime(n)&&n>1 \\ Charles R Greathouse IV, Jan 30 2012
(PARI) is(n)=n%2 && !isprimepower(n) && n>1 \\ Charles R Greathouse IV, May 06 2016
(PARI) count(x)=if(x<9, 0, (x\=1) - sum(k=1, logint(x, 3), primepi(sqrtnint(x, k)) - 1) - x\2 - 1) \\ Charles R Greathouse IV, Mar 06 2018
CROSSREFS
A225375 is a subsequence.
Cf. A061345.
Sequence in context: A070005 A275384 A185307 * A098905 A225375 A329229
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 08 2001
EXTENSIONS
More terms from Klaus Brockhaus, Jun 10 2001
STATUS
approved