The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A061006 a(n) = (n-1)! mod n. 11
 0, 1, 2, 2, 4, 0, 6, 0, 0, 0, 10, 0, 12, 0, 0, 0, 16, 0, 18, 0, 0, 0, 22, 0, 0, 0, 0, 0, 28, 0, 30, 0, 0, 0, 0, 0, 36, 0, 0, 0, 40, 0, 42, 0, 0, 0, 46, 0, 0, 0, 0, 0, 52, 0, 0, 0, 0, 0, 58, 0, 60, 0, 0, 0, 0, 0, 66, 0, 0, 0, 70, 0, 72, 0, 0, 0, 0, 0, 78, 0, 0, 0, 82, 0, 0, 0, 0, 0, 88, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS It appears that a(n) = (n!*h(n)) mod n, where h(n) = Sum_{k = 1..n} 1/k. - Gary Detlefs, Sep 04 2010 Indeed: It is easy to show n!*h(n) - (n-1)! = n*(n-1)!*h(n-1). Since (n-1)!*h(n-1) is integral, n!*h(n) == (n-1)! mod n. - Franz Vrabec, Apr 08 2017 LINKS Seiichi Manyama, Table of n, a(n) for n = 1..1000 Wikipedia, Wilson's theorem FORMULA a(4) = 2, a(p) = p - 1 for p prime (Wilson's_theorem), a(n) = 0 otherwise. Apart from n = 4, a(n) = (n-1)*A061007(n) = (n-1)*A010051(n). EXAMPLE a(4) = 2 since (4-1)! = 6 = 2 mod 4. a(5) = 4 since (5-1)! = 24 = 4 mod 5. a(6) = 0 since (6-1)! = 120 = 0 mod 6. MAPLE P:=proc(n) local a, i, k, w; for i from 1 by 1 to n do w:=((i-1)! mod i); print(w); od; end: P(1000); # Paolo P. Lava, Apr 23 2007 MATHEMATICA Table[Mod[(n - 1)!, n], {n, 100}] (* Alonso del Arte, Feb 16 2014 *) PROG (PARI) a(n)=if(isprime(n), n-1, if(n==4, 2, 0)) \\ Charles R Greathouse IV, Mar 31 2014 CROSSREFS Positive for all but the first term of A046022. Cf. A000040, A000142, A061007, A061008, A061009. Sequence in context: A246816 A127786 A030207 * A080736 A326127 A276151 Adjacent sequences:  A061003 A061004 A061005 * A061007 A061008 A061009 KEYWORD nonn,easy AUTHOR Henry Bottomley, Apr 12 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 15 01:28 EDT 2020. Contains 336484 sequences. (Running on oeis4.)