login
A127786
Expansion of phi(q) * phi(q^2) * phi(-q^4) in powers of q where phi() is a Ramanujan theta function.
3
1, 2, 2, 4, 0, -4, 0, -8, -2, 6, -8, 4, 0, -12, 0, -8, -4, 8, 10, 12, 0, -8, 0, -8, 8, 14, -8, 16, 0, -4, 0, -16, 6, 16, 16, 8, 0, -20, 0, -8, -8, 8, -16, 20, 0, -20, 0, -16, -8, 18, 10, 8, 0, -12, 0, -24, 0, 16, -24, 12, 0, -20, 0, -24, 12, 8, 16, 28, 0, -16, 0, -8, -10, 32, -8, 20, 0, -16, 0, -16, -8, 18, 32, 20, 0, -24, 0
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of eta(q^2)^3 * eta(q^4)^5 / (eta(q)^2 * eta(q^8)^3) in powers of q.
Euler transform of period 8 sequence [ 2, -1, 2, -6, 2, -1, 2, -3, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (64 t)) = 128 * (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. of A213622. - Michael Somos, Sep 08 2014
a(8*n + 4) = a(8*n + 6) = 0.
a(n) = A080963(2*n). a(2*n) = A116597(n). a(2*n + 1) = 2 * A246836(n). a(4*n + 1) = 2 * A246835(n). a(4*n + 3) = 4 * A246833(n). - Michael Somos, Sep 08 2014
a(8*n) = A212885(n). a(8*n + 1) = 2 * A213622(n). a(8*n + 2) = 2 * A246954(n). a(8*n + 3) = 4 * A246832(n). a(8*n + 5) = - 4 * A246837(n). a(8*n + 7) = - 8 * A033763(n). - Michael Somos, Sep 08 2014
a(3*n + 2) = 2 * A257873(n). - Michael Somos, May 11 2015
EXAMPLE
G.f. = 1 + 2*q + 2*q^2 + 4*q^3 - 4*q^5 - 8*q^7 - 2*q^8 + 6*q^9 - 8*q^10 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^2] EllipticTheta[ 4, 0, q^4], {q, 0, n}]; (* Michael Somos, Sep 08 2014 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^4 + A)^5 / (eta(x + A)^2 * eta(x^8 + A)^3), n))};
KEYWORD
sign
AUTHOR
Michael Somos, Jan 29 2007
STATUS
approved